Weyl磁体畴壁耗散滑动动力学诱导的突发性电场
近日,日本东京大学Max Hirschberger团队研究了Weyl磁体畴壁耗散滑动动力学诱导的突发性电场。相关论文于2026年1月15日发表在《自然—物理学》杂志上。
磁体中拓扑缺陷的动力学运动会产生涌现电场,斯格明子涡旋的持续流动便是典型例证。然而,人们对这种涌现电场背后的电动力学机制仍知之甚少。在此背景下,磁畴壁——这种具有滑动模式与自旋倾斜模式两种集体运动的一维拓扑缺陷——为相关探索提供了理想平台。
研究组证明,振荡电流激励下磁畴壁的耗散运动可产生涌现电场。研究组在基于磁性外尔半金属NdAlSi的介观器件中,通过施加磁场对磁畴构型进行成像并量化畴壁长度。这些器件表现出异常强烈的畴壁散射效应,并如复阻抗虚部观测结果所示,产生显著的涌现电场。自旋动力学模拟揭示,畴壁滑动模式相较于自旋倾斜模式占据主导地位,其中畴壁运动相对于驱动力的相位延迟对涌现电场产生关键影响。该发现确立了畴壁动力学作为研究涌现电磁场的有效平台,并将推动对磁孤子与传导电子耦合运动的进一步探索。
附:英文原文
Title: Emergent electric field induced by dissipative sliding dynamics of domain walls in a Weyl magnet
Author: Yamada, Rinsuke, Kurebayashi, Daichi, Fujishiro, Yukako, Okumura, Shun, Nakamura, Daisuke, Yasin, Fehmi S., Nakajima, Taro, Yokouchi, Tomoyuki, Kikkawa, Akiko, Taguchi, Yasujiro, Tokura, Yoshinori, Tretiakov, Oleg A., Hirschberger, Max
Issue&Volume: 2026-01-15
Abstract: The dynamic motion of topological defects in magnets induces an emergent electric field, as exemplified by the continuous flow of skyrmion vortices. However, the electrodynamics underlying this emergent field remains poorly understood. In this context, magnetic domain walls—one-dimensional topological defects with two collective modes, sliding and spin-tilt—offer a promising platform for exploration. Here we demonstrate that the dissipative motion of domain walls under oscillatory current excitation generates an emergent electric field. We image domain patterns and quantify the domain-wall length under applied magnetic fields in mesoscopic devices based on the magnetic Weyl semimetal NdAlSi. These devices exhibit exceptionally strong domain-wall scattering and a pronounced emergent electric field, as observed in the imaginary component of the complex impedance. Spin dynamics simulations reveal that domain-wall sliding dominates over spin-tilting, in which the phase delay of the domain-wall motion with respect to the driving force impacts the emergent electric field. Our findings establish domain-wall dynamics as a platform for studying emergent electromagnetic fields and motivate further investigations of the coupled motion of magnetic solitons and conduction electrons.
DOI: 10.1038/s41567-025-03124-z
Source: https://www.nature.com/articles/s41567-025-03124-z
